On Adjoint and Brain Functors
نویسندگان
چکیده
There is some consensus among orthodox category theorists that the concept of adjoint functors is the most important concept contributed to mathematics by category theory. We give a heterodox treatment of adjoints using heteromorphisms (object-to-object morphisms between objects of different categories) that parses an adjunction into two separate parts (left and right representations of heteromorphisms). Then these separate parts can be recombined in a new way to define a cognate concept, the brain functor, to abstractly model the functions of perception and action of a brain. The treatment uses relatively simple category theory (aside from the Mathematical Appendix) and is focused on the interpretation and application of the mathematical concepts.
منابع مشابه
Adjoint functors in graph theory
We survey some uses of adjoint functors in graph theory pertaining to colourings, complexity reductions, multiplicativity, circular colourings and tree duality. The exposition of these applications through adjoint functors unifies the presentation to some extent, and also raises interesting questions.
متن کاملQuasi-Frobenius functors with application to corings
Müller generalized in [12] the notion of a Frobenius extension to left (right) quasi-Frobenius extension and proved the endomorphism ring theorem for these extensions. Recently, Guo observed in [9] that for a ring homomorphism φ : R → S, the restriction of scalars functor has to induction functor S ⊗R − : RM → SM as right ”quasi” adjoint if and only if φ is a left quasi-Frobenius extension. In ...
متن کاملA Concrete Introduction to Categories
1. Categories 2 1.1. First Definition and Examples 2 1.2. An Alternative Definition: The Arrows-Only Perspective 7 1.3. Some Constructions 8 1.4. The Category of Relations 9 1.5. Special Objects and Arrows 10 1.6. Exercises 14 2. Functors and Natural Transformations 16 2.1. Functors 16 2.2. Full and Faithful Functors 20 2.3. Contravariant Functors 21 2.4. Products of Categories 23 3. Natural Tr...
متن کاملA Theory of Adjoint Functors - with some Thoughts about their Philosophical Significance
The question “What is category theory” is approached by focusing on universal mapping properties and adjoint functors. Category theory organizes mathematics using morphisms that transmit structure and determination. Structures of mathematical interest are usually characterized by some universal mapping property so the general thesis is that category theory is about determination through univers...
متن کاملAdjoint Functors and Heteromorphisms
Category theory has foundational importance because it provides conceptual lenses to characterize what is important in mathematics. Originally the main lenses were universal mapping properties and natural transformations. In recent decades, the notion of adjoint functors has moved to centerstage as category theory’s primary tool to characterize what is important in mathematics. Our focus here i...
متن کامل